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Introduction

HCCI engines can provide diesel-like efficiencies and ultra-low NOX
and PM emissions – However there are several technical barriers.

Control of combustion phasing with changes in fueling rate is 
particularly important.
– Various control techniques are available:  intake heating, VCR, VVT.
– Ultimately adjust the compressed-gas temperature (TCG) at “ignition.”

Often considered that combustion phasing can be affected by F/A 
mixture ⇒ Ignition is faster with richer mixtures created by higher 
fueling rates or charge-mixture inhomogeneities.

However, as the fuel load is varied, several factors are affected, each 
of which can affect combustion phasing.
– Most factors directly or indirectly cause changes in the TCG.
– Additionally, these factors can sometimes mask changes – or lack of 

changes – due directly to F/A-mixture effects.



Objectives

Identify the factors that cause changes in combustion phasing with 
changes in fueling rate (fuel-air equivalence ratio, φ).

Systematically remove the changes due to each factor.
– Understand the relative magnitude of these factors.

Isolate the effect of changes in fuel chemistry with equivalence ratio 
to understand the importance of this factor.
– Compare behavior of various fuel-types:  iso-octane, gasoline, & PRF80. 

Investigate the potential of fuel stratification for controlling
combustion phasing.



HCCI Engine and Subsystems
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Observed Changes with Variation in Fueling
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As fueling (φ) is varied, TCG must 
be adjusted to maintain 
combustion phasing. 
– 50%-burn phasing at TDC 

(indication of performance).
– Adjust TCG by varying Intake 

temperature (Tin).

All fuels show a trend of a lower 
required Tin with increased φ.
– Do richer mixtures autoignite 

more easily for all fuels?
– What role do other factors play?

For example, wall heating and 
residuals will change with φ.
– Figure shows fuel-on transients 

for φ = 0.2 and 0.3, iso-octane 
(avg. of 10 events). 
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Factors Causing Changes in Tin with Fueling

1. Combustion duration increases at lower φ.  This requires that the  
start of combustion occur earlier to maintain 50% burn at TDC. 

2. Wall temperatures increase with increased φ, causing higher TCG for  
a given Tin.

3. Temperature of residuals increases with φ, reducing required Tin.

4. Heating/cooling during induction changes with φ as the ∆T between 
Tin and Twall varies, amount of fuel vaporization, & “dynamic heating.”

5. Fuel-chemistry effects.
– Differences in φ can affect the chemical-kinetic rates of autoignition.
– Thermodynamic properties of mixture – particularly specific heat (γ=cp/cv).

Systematically remove factors 1-4 leaving only fuel-chemistry effects.
– Evaluate differences in fuel chemistry:  iso-octane, gasoline, & PRF80.
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1.  Changes in Combustion Duration

Burn duration increases as φ
reduced.
– Phasing remains very stable –

Std. Dev < 0.3°CA for 10 & 50% 
burn over range of interest. 

– 0.1<φ<0.3 (idle to moderate load).

Fuel-chemistry effects should 
correlate with ignition point.

Select 10% burn as “ignition” pt.
– Use Woschni correlation to 

account for heat transfer. 

Retake data with const. 10% 
burn at 357.4°CA, match φ=0.2.
– Change in Tin with φ is greatly 

reduced, from 24°C to 8.5°C.

Base Fuel:  Iso-Octane

HRR-Woschni
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2 & 3.  Remove Changes in Twall and Residuals
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Remove changes in Twall & residuals 
using alternate-firing technique.
– Hold 10% burn phasing at 357.4°.

Reverses trend – higher Tin with 
higher φ.

Change in slope between the curves 
gives relative magnitude of factors.
– φ < 0.2, burn duration dominates. 

comb. eff. low:  long burn, low heating.
– φ > 0.2, opposite is true.

Separate Twall & residual effects 
estimated from transient data and 
fire18/2 data.
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Estimate Tresiduals ≈ average of Texhaust and Tblowdown.

Combine to get:

A straightforward procedure.  Technique is very sensitive.

4.  Heating/Cooling During Induction

Tin ≠ TBDC due to heating/cooling during induction.

Developed technique to estimate TBDC ⇒ Details in SAE 2004-01-1900. 

Compute changes in TBDC from measured changes in mass flow relative 
to a base condition.
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Ideal gas law gives:

Base condition:  motored Tin = Tcoolant = 100°C, minimizes heat transfer.
– Dynamic heating ⇒ TBDC, base = 110°C (from WAVE code, Ricardo).
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4 & 5.  Use TBDC to Isolate Effects of Fuel Chemistry

Iso-octane

SAE 2004-01-0557

For fire19/1, residuals are constant; 
use effective Tin rather than TBDC.

Effective Tin curve shows only 
changes due to fuel-chemistry. 
– Autoignition kinetics & γ = cp/cv.

Does a higher φ enhance 
autoignition for iso-octane?
– Higher φ ⇒ smaller γ ⇒ higher Tin

required for same TCG.

Lesser slope of Effective Tin curve 
indicates an enhancement with φ.
– Effect fairly small for iso-octane.

> Much less than sum of other four 
factors.

– Single-stage ignition fuel.
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5.  Fuel-Chemistry Effects – Various Fuels

Alternatively, hold Tin constant 
and observe changes in phasing.
– Trends similar to effective Tin.

The 10%-phasing curves show 
isolated fuel-chemistry effects.

Iso-octane:  enhancement of 
ignition kinetics < effect of γ.

Gasoline:  a little more 
enhancement of ignition kinetics 
with increased φ than iso-octane.

PRF80:  autoignition kinetics 
greatly enhanced with φ.
– Correlates with increasing cool-

flame chemistry with φ (infers 
diesel fuel).

– At low φ cool-flame activity is 
minimal, and trend is similar to 
iso-octane.

Fire 19/1, 10% HR



50% Burn Phasing for Constant Tin and Twall

Fire 19/1 data simulates 
behavior during a rapid 
load change before Tin and 
Twall can respond.
– Iso-octane & gasoline:  

small variation, little 
compensation required. 
⇒ single-stage ignition

– PRF80:  large variation, 
significant compensation 
required. ⇒ dual-stage 
ignition (cool-flame chem.)

Data can also be interpreted as indicating the potential for changing 
combustion phasing with mixture stratification (Twall & residuals constant).
– PRF80:  mixture stratification has a strong potential to control phasing.
– Iso-octane and gasoline:  stratification offers little benefit for phasing control.
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50% burn is a better indicator of engine performance.
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Stratification Advances Combustion for PRF-80
PRF80:  simulate load change 
from φ = 0.24 ⇒ 0.18. 
– φ = 0.24,  Tin = 59°C for 50% 

burn at TDC.
– φ = 0.18, Tin = 102°C for 50% 

burn at TDC. 

Stratification can rapidly adjust 
phasing for PRF80.
– Injection at 270°CA, in phase.
– Also, improves combustion eff., 

as shown in SAE 2003-01-0752.

Iso-octane:  stratification does 
not advance phasing. 

– Weak enhancement of 
autoignition kinetics with φ. 

– Does not overcome charge 
cooling due to vaporization.

SAE 2004-01-0557

All data at φ = 0.18



Summary and Conclusions

In addition to fuel-chemistry, several factors affect the change in 
intake-temperature required to maintain constant 50%-burn phasing 
when the fueling rate is varied.

The relative magnitude of these factors depends on the load range.
– At low loads, (φ < 0.2), changes in burn duration have the largest effect.
– For higher loads (φ > 0.25), changes in Twall are dominant.

The effect of residuals is relatively small in this engine.
– They could be the dominant factor in a high-residual engine.

The effect of F/A mixture (φ) on ig. timing depends strongly on fuel type.
– Single-stage ignition fuels:  iso-octane & gasoline ⇒ effect is small.
– Dual-stage ignition fuels:  PRF80 ⇒ effect is substantial due to cool-flame 

chemistry.  (Similar effect expected for diesel fuel.)

Mixture stratification can significantly and rapidly advance combustion 
phasing for PRF80 (or by inference diesel fuel), but not for iso-octane.
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